H(t)^-1=-16t^2+128t

Simple and best practice solution for H(t)^-1=-16t^2+128t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)^-1=-16t^2+128t equation:



(H)^-1=-16H^2+128H
We move all terms to the left:
(H)^-1-(-16H^2+128H)=0
We add all the numbers together, and all the variables
-(-16H^2+128H)+H-1=0
We get rid of parentheses
16H^2-128H+H-1=0
We add all the numbers together, and all the variables
16H^2-127H-1=0
a = 16; b = -127; c = -1;
Δ = b2-4ac
Δ = -1272-4·16·(-1)
Δ = 16193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-127)-\sqrt{16193}}{2*16}=\frac{127-\sqrt{16193}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-127)+\sqrt{16193}}{2*16}=\frac{127+\sqrt{16193}}{32} $

See similar equations:

| 3(-2x-2)=8 | | 9x-68=17x+12 | | 3x-2+6x=7 | | 8=-8+3/8(16-40n) | | 62+40=10n | | -5x+3(-7x+22)=196 | | 2(83x)=22 | | (x-2)^2=3(x-5)+x^2 | | y-26=28 | | -4j=40 | | u-14=-31 | | 2(8+3x)=22 | | 80=2(40-1.5y)+3y | | U-4+u+9+12=43 | | 2/3-x/2=7/6 | | j+30=70 | | 2/3a-1/6=1/6 | | y+-56=-29 | | 3m-7m=-7m+15 | | 8x+2/6x-9=4/3 | | t-75=-4 | | 15+6×t=81 | | -3(-7x-3)-5x=-4 | | q/4=-5 | | 8x-8-6x=-6 | | 8x-56+3=10x+56-3 | | 169=(6+2x)^2 | | -1/2(-2/3x+12)=-8 | | k−-26=49 | | u-9=-29 | | n/7=28 | | v/23=-26 |

Equations solver categories